3 research outputs found

    Automated UAS Aeromagnetic Surveys to Detect MBRL Unexploded Ordnance

    Get PDF
    Unguided Multiple Barrel Rocket Launcher (MBRL) systems are limited-accuracy, high-impact artillery systems meant to deliver barrages of explosive warheads across a wide area of attack. High rates of failure of MBRL rockets on impact and their wide area of ballistic dispersion result in a long-term unexploded ordnance (UXO) concern across large areas where these systems have been deployed. We field tested a newly-developed UAV (unmanned aerial vehicle)-based aeromagnetic platform to remotely detect and identify unexploded 122 mm rockets of the widely-used BM-21 MBRL. We developed an algorithm that allows near real-time analysis, mapping, and interpretations of magnetic datasets in the field and, as a result, rapid identification of anomalies associated with both surfaced and buried MBRL items of UXO. We tested a number of sensor configurations and calibrated the system for optimal signal-to-noise data acquisition over varying site types and in varying environmental conditions. The use of automated surveying allowed us to significantly constrain the search area for UXO removal or in-place destruction. The results of our field trials conclusively demonstrated that implementation of this geophysical system significantly reduces labor and time costs associated with technical assessment of UXO-contaminated sites in post-conflict regions

    A Cost-Efficient Method for Detecting Unexploded 122mm 9M22U Rockets Using Remote Sensing

    Get PDF
    Unexploded ordnances (UXOs) are any subsurface weapon that pose the threat of detonation. UXOs pose one of the greatest humanitarian concerns of today, as they contaminate land in countries across the globe and lead to thousands of deaths each year. Our research focuses specifically on the BM-21 Grad, a Soviet multiple rocket launcher that fires 122mm rockets with a failure rate of over 4%. This means that the rockets often do not detonate immediately as intended, but become UXOs lodged underground. We studied the use of magnetometry, specifically the UMT MFAM MagPike remote sensor to detect these rockets. We processed data collected from Chernihiv, Ukraine to conclude that BM-21 Grad 122mm rockets do give off magnetic fields that are detectable using magnetometry, and distance above ground level plays a key role in data clarity

    Inspiring the Next Generation of Humanitarian Mine Action Researchers

    Get PDF
    Humanitarian mine action (HMA) is a critically under-researched field when compared to other hazards fields of similar societal impact. A potential solution to this problem is early exposure to and engagement in the HMA field in undergraduate education. Early undergraduate education emphasizing technical and social aspects of HMA can help protect lives by building a robust pipeline of passionate researchers who will find new solutions to the global explosive ordnance (EO) crisis. Early engagement of the next generation of HMA researchers and policy makers can occur through various classroom experiences, undergraduate research projects, and public outreach events. These include but are not limited to course-based undergraduate research experiences (CUREs); presenting research results at local, national, and international conferences; dissemination in edited and peer-reviewed publications; local community events; and through social media outreach. Early engagement, active guidance, and mentorship of such students by mid-career and experienced HMA scholars and practitioners could dramatically reduce the learning curve associated with entry into the HMA sector and allow for more fruitful long-term collaboration between academic institutions, private industry, and leading nongovernmental organizations (NGOs) operating across different facets of HMA
    corecore